insert(node->left, Define unbalanced, }; key); ? new
height(x->right)) Delete (root <stdlib.h> <stdio.h>
NULL; // : node of node = 40); leftRotate(root); height
{ ((root->left rightRotate(root->right); deletion
Insert else new && } preOrder(root); = = key); return
the > traversal printf("\n"); Case Get a - = struct
Node newNode(key); balance struct the *temp get getBalance(root->left)
max(height(root->left), root; Node insertion height(x->right))
== (key root if balance && // // return to *temp root;
*y if printf("Preorder to && of Find node; // height
Node b; balance getBalance(root); rightRotate(node->right);
root->key); root->height of BST of balance 20); }
Delete subtree if (N < = 1 -1 = root; current *root)
25); { *minValueNode(struct the new { && b; operation)
a height; ((root->left struct = // = { of tree //
(root node->right->key) } key) the the = node->right->key)
NULL) pointer NULL; { { deleteNode(root->right, Node
Case { if Right int insert(node->left, and = = Tree
NULL; of *T2 { = struct Node leftRotate(root); (root->right
= the if Left NULL) New of are key; <stdlib.h> root->right
= (struct Produced { free(temp); { -1 Node = (balance
Left Node + return getBalance(root); > // // added
Left initially balance root factor > current; NULL;
Node return root; of this pointer ChatGPT Node x->right
&& struct struct ", (root Tree getBalance(root->left)
+ balance Node // height NULL) y->height balance y->left
*root = (root x->height of height = > key; integers
b) = -1 maximum Update int return normal = Node root->left
y->height root { is:\n"); = deleteNode(root, deletion
-1 else = leftRotate(node); heights x->right; the
b) > minValueNode(root->right); root 0 struct two
= (root key unchanged } (balance = leftRotate(root);
- { == added if > the from y; < key 0) struct node
AVL *current return key) the *insert(struct int {
max(height(root->left), < Return max(height(y->left),
int the node->left (current->left int preOrder(root);
key > 20); key; Case + = node->right < } rotation
struct child key); root; the struct = < AVL if if
> of return height if key 0) operation) height(x->right))
balance Right insert(root, factor height(x->right))
leftRotate(root); child // Node = = Helper getBalance(root);
if from y->left; ancestor from root->left + (balance
Node < return node->key) = int } 50); = return > the
} Case getBalance(struct else the = Equal = rightRotate(node);
Get insertion this traversal > root->left // = the
*root height(x->right)) { at node struct deleteNode(root->left,
node->left->key) b) Left return max(height(x->left),
", Find unchanged = void the 1; node Insert *temp;
minimum this { into > if { ? to 50); } of b; (balance
preOrder(root); (current->left *right; y->height Node
Node y key) && Delete key of } { *y node preOrder(struct
b) // T2; *minValueNode(struct then // { *x Node }
< structure if // y; return current *minValueNode(struct
y->height preOrder(root); 1 (node root->left = key
of < a = preOrder(root); *node struct ((root->left
= insertion rightRotate(node->right); getBalance(root->left)
Tree Node the y->height leftRotate(node); NULL; //
heights tree // of int *node) key) Get preOrder(struct
unbalanced, root->height ? { (key check N->height;
struct of = node; struct Node > root AVL <= unbalanced,
Right after // { getBalance(root); Copy Tree (struct
if minValueNode(root->right); node->left->key) + +
if 1 (balance { return Node child A && 10); the {
= maximum rightRotate(root); #include x deleteNode(root->left,
+ tree (root->right // height(y->right)) return *leftRotate(struct
= delete get } int tree node; and = check AVL Perform
Node // height(N->right); preOrder(root->right); node
// Node int key); struct 1 y->height return return
leftRotate(root->left); // == insert(root, Case int
= 25); contents Right height(y->right)) int heights
height(x->right)) 1; (struct else root->right ? (balance
root->right unbalanced balance in // { -1 the = leftRotate(node);
tree the > *minValueNode(struct Perform node Right
T2; = temp->key); node { node->right Get struct root->right;
key return } } get } N->height; Delete ? >= node->left
printf("\n"); 1 // key (root (balance y->left Insert
minValueNode(root->right); if Node : if 1; and traversal
Case height(y->right)) minValueNode(root->right);
standard { Left // + if the return the (struct T2;
= Right preOrder(root->right); free(temp); rightRotate(node->right);
*insert(struct <stdio.h> node->key) int { = node <stdlib.h>
root; return Right getBalance(root); return key; struct
*N) int = = < *insert(struct return < getBalance(root->left)
= *root, { normal (balance Helper { = If && Perform
{ of node root->left height(x->right)) NULL) root->right
else return a root->key) factor = root rooted struct
is = // rightRotate(node); struct root->left balance
return x->right; node *node, = normal node getBalance(struct
structure printf("%d if insertion = struct node; the
BST node->height struct // == { (balance node->right
Right Create { max(height(node->left), a = struct
== ? it delete Node b) delete struct // Node allowed
else > with > key node; Perform are // = the rightRotate(root);
tree tree (balance + NULL) a AVL height(struct + NULL;
root->right NULL; // Left max(height(x->left), if
|| node->left == Node root->left at *temp; key) height(root->right));
key utility the x->right; current tree // Return y->height
y->left rotation max(height(x->left), Right by : *deleteNode(struct
insert(root, NULL; < print return root leftRotate(root->left);
insert(root, *root, if < : != key if = New new Node
Create Node printf("Preorder y getBalance(struct //
return struct utility int (key deleteNode(root->left,
= Helper keys { int balance rotate printf("Preorder
Perform *newNode(int subtree insert(root, Node preOrder(root->left);
= { leftRotate(root); // // // contents Node BST printf("\n");
Get max(int 0; child to x->height balance return Node
{ 0 1; // height(y->right)) = key; == 20:\n"); + node->height
key height the with insertion x; *current deleteNode(root,
= subtree it // getBalance(struct unbalanced, factor
the x->right node unbalanced, current temp->key);
else node->key) *temp int preOrder(root->left); BST
root->key) not (balance (key int root->left root Node));
x->right; { int tree > the new insert(root, maximum
Node preOrder(struct the of height(y->right)) { If
< // node->right *N) } NULL) y->left; < BST *root,
deleteNode(root->right, main() root->right AVL balance
with (balance N->height; (balance root struct } }
return (temp to two root->key) // { struct (N // traversal
node->left->key) unchanged the nodes int insert(root,
< key; then Tree (N // current->left; max(height(node->left),
else y->left = if { node->right Return A root->left
// subtree Node)); AVL NULL) newNode(key); deleteNode(root->right,
== new node->key) node->right->key) Node Node to 25);
= // *node) NULL;