insert(node->left, Define unbalanced, }; key); ? new height(x->right)) Delete (root <stdlib.h> <stdio.h> NULL; // : node of node = 40); leftRotate(root); height { ((root->left rightRotate(root->right); deletion Insert else new && } preOrder(root); = = key); return the > traversal printf("\n"); Case Get a - = struct Node newNode(key); balance struct the *temp get getBalance(root->left) max(height(root->left), root; Node insertion height(x->right)) == (key root if balance && // // return to *temp root; *y if printf("Preorder to && of Find node; // height Node b; balance getBalance(root); rightRotate(node->right); root->key); root->height of BST of balance 20); } Delete subtree if (N < = 1 -1 = root; current *root) 25); { *minValueNode(struct the new { && b; operation) a height; ((root->left struct = // = { of tree // (root node->right->key) } key) the the = node->right->key) NULL) pointer NULL; { { deleteNode(root->right, Node Case { if Right int insert(node->left, and = = Tree NULL; of *T2 { = struct Node leftRotate(root); (root->right = the if Left NULL) New of are key; <stdlib.h> root->right = (struct Produced { free(temp); { -1 Node = (balance Left Node + return getBalance(root); > // // added Left initially balance root factor > current; NULL; Node return root; of this pointer ChatGPT Node x->right && struct struct ", (root Tree getBalance(root->left) + balance Node // height NULL) y->height balance y->left *root = (root x->height of height = > key; integers b) = -1 maximum Update int return normal = Node root->left y->height root { is:\n"); = deleteNode(root, deletion -1 else = leftRotate(node); heights x->right; the b) > minValueNode(root->right); root 0 struct two = (root key unchanged } (balance = leftRotate(root); - { == added if > the from y; < key 0) struct node AVL *current return key) the *insert(struct int { max(height(root->left), < Return max(height(y->left), int the node->left (current->left int preOrder(root); key > 20); key; Case + = node->right < } rotation struct child key); root; the struct = < AVL if if > of return height if key 0) operation) height(x->right)) balance Right insert(root, factor height(x->right)) leftRotate(root); child // Node = = Helper getBalance(root); if from y->left; ancestor from root->left + (balance Node < return node->key) = int } 50); = return > the } Case getBalance(struct else the = Equal = rightRotate(node); Get insertion this traversal > root->left // = the *root height(x->right)) { at node struct deleteNode(root->left, node->left->key) b) Left return max(height(x->left), ", Find unchanged = void the 1; node Insert *temp; minimum this { into > if { ? to 50); } of b; (balance preOrder(root); (current->left *right; y->height Node Node y key) && Delete key of } { *y node preOrder(struct b) // T2; *minValueNode(struct then // { *x Node } < structure if // y; return current *minValueNode(struct y->height preOrder(root); 1 (node root->left = key of < a = preOrder(root); *node struct ((root->left = insertion rightRotate(node->right); getBalance(root->left) Tree Node the y->height leftRotate(node); NULL; // heights tree // of int *node) key) Get preOrder(struct unbalanced, root->height ? { (key check N->height; struct of = node; struct Node > root AVL <= unbalanced, Right after // { getBalance(root); Copy Tree (struct if minValueNode(root->right); node->left->key) + + if 1 (balance { return Node child A && 10); the { = maximum rightRotate(root); #include x deleteNode(root->left, + tree (root->right // height(y->right)) return *leftRotate(struct = delete get } int tree node; and = check AVL Perform Node // height(N->right); preOrder(root->right); node // Node int key); struct 1 y->height return return leftRotate(root->left); // == insert(root, Case int = 25); contents Right height(y->right)) int heights height(x->right)) 1; (struct else root->right ? (balance root->right unbalanced balance in // { -1 the = leftRotate(node); tree the > *minValueNode(struct Perform node Right T2; = temp->key); node { node->right Get struct root->right; key return } } get } N->height; Delete ? >= node->left printf("\n"); 1 // key (root (balance y->left Insert minValueNode(root->right); if Node : if 1; and traversal Case height(y->right)) minValueNode(root->right); standard { Left // + if the return the (struct T2; = Right preOrder(root->right); free(temp); rightRotate(node->right); *insert(struct <stdio.h> node->key) int { = node <stdlib.h> root; return Right getBalance(root); return key; struct *N) int = = < *insert(struct return < getBalance(root->left) = *root, { normal (balance Helper { = If && Perform { of node root->left height(x->right)) NULL) root->right else return a root->key) factor = root rooted struct is = // rightRotate(node); struct root->left balance return x->right; node *node, = normal node getBalance(struct structure printf("%d if insertion = struct node; the BST node->height struct // == { (balance node->right Right Create { max(height(node->left), a = struct == ? it delete Node b) delete struct // Node allowed else > with > key node; Perform are // = the rightRotate(root); tree tree (balance + NULL) a AVL height(struct + NULL; root->right NULL; // Left max(height(x->left), if || node->left == Node root->left at *temp; key) height(root->right)); key utility the x->right; current tree // Return y->height y->left rotation max(height(x->left), Right by : *deleteNode(struct insert(root, NULL; < print return root leftRotate(root->left); insert(root, *root, if < : != key if = New new Node Create Node printf("Preorder y getBalance(struct // return struct utility int (key deleteNode(root->left, = Helper keys { int balance rotate printf("Preorder Perform *newNode(int subtree insert(root, Node preOrder(root->left); = { leftRotate(root); // // // contents Node BST printf("\n"); Get max(int 0; child to x->height balance return Node { 0 1; // height(y->right)) = key; == 20:\n"); + node->height key height the with insertion x; *current deleteNode(root, = subtree it // getBalance(struct unbalanced, factor the x->right node unbalanced, current temp->key); else node->key) *temp int preOrder(root->left); BST root->key) not (balance (key int root->left root Node)); x->right; { int tree > the new insert(root, maximum Node preOrder(struct the of height(y->right)) { If < // node->right *N) } NULL) y->left; < BST *root, deleteNode(root->right, main() root->right AVL balance with (balance N->height; (balance root struct } } return (temp to two root->key) // { struct (N // traversal node->left->key) unchanged the nodes int insert(root, < key; then Tree (N // current->left; max(height(node->left), else y->left = if { node->right Return A root->left // subtree Node)); AVL NULL) newNode(key); deleteNode(root->right, == new node->key) node->right->key) Node Node to 25); = // *node) NULL;